УДК 621.762.55

Колибашкін С.О., Лутай, А.М.¹

1-Національний технічний університет України « Київський політехнічний інститут імені Ігоря Сікорського», м. Київ

ТЕРМОДЕФОРМАЦІЙНЕ ФОРМОУТВОРЕННЯ КОНСТРУКЦІЙ З ЗМІЦНЕНИХ СПЛАВІВ АЛЮМІНІЯ

Вступ. Відомо, що зміцнення сплавів в результаті старіння обумовлено виділенням всередині зерен твердого розчину високодисперсних рівномірно розподілених частинок зміцнюючої фази (дисперсне зміцнення), що ефективно гальмує переміщення дислокацій [1]. Вихідні значення концентрації (С) та розміру (L) частинок (після гартування та природного або штучного старіння) суттєво змінюються при повторному пічному нагріві. Зменшення величини С з збільшенням температури обумовлене розчиненням вказаних фаз внаслідок зменшення максимальної концентрації Сu та Mn у твердому розчині на базі алюмінію та проходженням процесу повернення [2,3]. Коагуляція частинок, яка у природне зістареному сплаві Д16 проходить при температурі t ≥ 150 ⁰C та часі витримки $\tau \geq 0,5$ г суттєво збільшує значення 1 [4]. Тобто при пічному нагріванні зістареного сплаву в ньому з часом проходять процеси знеміцнення, які інтенсифікуються з збільшенням температури. При лазерному формоутворенні (ЛФ) існує дві температурні складові – термічний цикл з високими швидкостями нагрівання та охолодження і середня температура заготовки, що визначається у моменти між черговими проходами (t_c). Остання може ініціювати у зоні термічного впливу аналогічні процеси знеміцнення, що суттєво погіршить механічні властивості конструкції.

Мета роботи – дослідити структуру та механічні властивості ЗТВ при ЛФ конструкцій з зістареного сплаву Д16, визначити області зміни параметрів ЛФ, в межах яких забезпечується існування у ЗТВ вихідної структури зістареного сплаву.

Матеріал та методики досліджень. Зразки розміром 100×60 мм товщиною h=1,8мм вирізалися з листа сплаву Д16Т (склад: ваг. %: Al – 93,6, Cu – 3,97, Mg – 1,43, Mn – 0,625). Двохвимірне ЛФ здійснювали на CO₂- лазері при потужності випромінювання P =1кВт, діаметрі фокальної плями d=4мм, швидкостях руху променя V= 6,0м/хв. Механічні випробування на розтяг проводили згідно з ДСТУ EN 10002-1:2006 на машині TIRAtest 2300. Зразки

Рис.1. Зразок сплаву Д16 після випробування на розтяг

(рис.1) вирізувалися на електроіскровому верстаті по сліду лазерного променя, після чого зонам захвату придавали пласку форму і шліфували торцеві поверхні. Вимірювання мікротвердості проводили на приладі ПМТ- 3 при навантаженнях 10 – 100 г. Рентгеноструктурні дослідження здійснювалися на дифрактометрі Rigaku Ultima IV у Cu_{Ka} випромінюванні. Зйомку проводили у інтервалі кутів $2\theta - 20 - 140^{\circ}$ з кроком 0,02° і часом накопичення 2с. Величину залишкових напружень (ЗН) визначали sin² ψ - методом за дифракційним максимумом (422) [5]. Середній розмір областей когерентного розсіювання L_{OKP} визначали методом апроксимації.

Результати роботи та їх обговорення Спостерігається певна циклічність у зміні H_µ поверхні лазерної доріжки від кількості проходів при обробці без

Рис.2. Залежність мікротвердості поверхні зразка від кількості проходів безпосередньо після обробки та після 48 годинного природного старіння

охолодження (рис.2) При №=10 помітне зростання величини вказаного параметра при вимірюванні безпосередньо після обробки на який практично не впливає процес старіння. При подвоєнні № мікротвердість значно зменшується, але старіння суттєво збільшує Н_µ. При подальшому збільшенні № спостерігається зростання аналізованого параметру (№=30) з значним зменшенням при № =45. Підкреслимо, що при двох останніх значеннях. кількості проходів ефект старіння незначний.

Кількість	Умовна границя	Границя	Відносне
проходів	текучості, МПа	міцності, МПа	видовження,
			%
Вихідні	325	483	12
значення			
10	346	505	10
30	328	480	11
45	305	445	10

Таблиця. Механічні властивості ЗТВ

На залежностях H_µ від відстані від обробленої поверхні (рис.3) спостерігається мінімум приблизно на половині товщини зразка. Ступінь зниження H_µ збільшується з зростанням №. З наведених результатів виходить, що при №≥ 20 у ЗТВ проходять процеси знеміцнення сплаву.

Як випливає з рентгеноструктурного дослідження зниження характеристик міцності у ЗТВ обумовлено частковим розчинення інтерметалідів та їх коагуляцією.

Висновки. 1. Традиційна схема двомірного ЛФ зістареного сплаву Д16 приводить до суттєвого знеміцнення ЗТВ ри великої кількості проходів. 2. При обробці сплаву Д16 на великі кути згину потрібно проводити охолодження заготовки.

Список використаних джерел:

1.Смирнова, Н.А. Разработка и исследование процессов упрочнения поверхности алюминиевых сплавов излучением лазера: дис. канд. тех. наук/ Н.А. Смирнова. – М., 2000 – 222с.

2.Knupfer S.M. The effects of laser forming on the mechanical and metallurgical properties of low carbon steel and aluminium alloy samples/ S.M. Knupfer, A.J. Moore// Materials Science and Engineering: A Volume 527, Issues 16–17, 25 June 2010, Pages 4347–4359.

3.Zaeh, M. F. Development of a robust laser beam bending process for aluminum fuselage structures/ M. F. Zaeh, Tobias Hornfeck// Production Engineering June 2008, Volume 2, Issue 2, pp 149-155.

4.Chan, K.C. Laser bending of an Al6013/SiCp aluminium matrix composite sheet /K.C. Chan', J. Liang// Journal of Materials Processing Technology Volume 100, Issues 1-3, 3 April 2000, Pages 214–218.

.5. Головко Л. Ф. Фізичні методи досліджень. Рентгенівський аналіз залишкових напружень [Електронний ресурс] : методичні вказівки до проведення практичних занять, виконання контрольних робіт та самостійної роботи / Л. Ф. Головко, А. М. Лутай, Ю. В. Ключников ; НТУУ «КПІ». – Електронні текстові дані (1 файл: 5,16 Мбайт). – Київ : НТУУ «КПІ», 2014. – 78 с. – Назва з екрана. – Доступ : <u>http://ela.kpi.ua/handle/123456789/7638</u>